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We consider the time evolution of a class of stochastic systems of finite size with 
polynomial nearest neighbor transition rates, We obtain analytical expressions 
for the first passage time (FPT) and its moments. We show that the mean FPT, 
averaged over a uniform initial distribution, shows a simple asymptotoc 
behavior with the system size and the parameters of the transition rates. 
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1. I N T R O D U C T I O N  

The t ime evo lu t ion  of  s tochast ic  systems plays  a m a j o r  role in m a n y  
p h e n o m e n a  in diverse fields, such as semiconductors ,  reac t ion  kinetics,  and  
the spread  of  infection in a hea l thy  popu la t ion .  (1-3) In this pape r  we s tudy 
a class of  one-d imens iona l  s tochast ic  systems with po lynomia l  t rans i t ion  

rates. In  this class of  systems the t ime evolu t ion  of  a discrete r a n d o m  
var iable  X(t) res t r ic ted to  integer  values in [0, N ]  is governed  by  the 
t rans i t ion  rates A(n, N) and  B(n, N), which are, respectively,  the rates of 
t rans i t ion  per  uni t  t ime from states n --* n - 1 and  n --* n + 1. The t rans i t ion  
rates A(n, N)  and  B(n, N)  are given by  

1 

B ( n , N ) =  ~ ain'/N i-1 
i=1 (1) 

A(n, N)  = B(n, N)  + Cnl/N ' 1 
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where the ai and C are finite constants with the further restrictions 

B(n,N)>IO for n = 0 , 1  ..... N 

l 

a l > 0 ,  C > 0 ,  / > 1 ,  ~ a i = 0  
i = 1  

The last condition is imposed so as to make the system closed. Note that 
with this condition B(N, N) = 0. Both A(0, N) and B(0, N) are also zero. 

Such systems can serve as useful models of reaction kinetic systems 
(without diffusion) as well as of population epidemics. In the population 
epidemic case, N will be the total number of individuals (which remains 
constant with time) and X(t) the number of infected individuals at any 
time t. The only stable state of these systems is n = 0. The mean first 
passage time (MFPT)  is a useful quantity for characterizing the behavior 
of such systems. The random variable v(i) denoting the F P T  to reach the 
stable state n = 0 from the initial state n = i is defined as 

z(i) = miner [ 0 < t < oo; X(t) = 0; X(0) = i] 

Further we define 

(2) 

and 

tm(i ) = ( 'F"(i))  for m = 1, 2,... 

N 

{m = ( l /N)  ~ tin(i) (3) 
i = 0  

That is, tl(i)= (v ( i ) )  defines the mean first passage time (MFPT)  and t- 1 

the average M F P T  starting from an initial unitorm distribution. We prove 
the following theorem. 

T h e o r e m .  Let X(t) be a random variable restricted to 1-0, N ]  
whose time evolution is governed by the transition rates given by Eq. (1). 
Then the average M F P T  t- 1 defined in Eq. (3) is given by 

Lim {1/(N') (l- 1 ) / l =  ~ /  (4) 
N ~ o o  

where N ' =  (N/al)(1/C) 1/(l- 1) and ~bl is given by the improper integral 

Ol = ll/l I :  dzl ~. (da2 /z2)exp( - z~  + z]) (5) 
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A special case of this type of system was studied by Privman et aL ~a) 
with the transition rates 

A(n, N) = (1 - y) n + yn2/N 

B(n, N) = (1 -- y) n -- (1 -- y) n2/N 
(6) 

They found that  even though the bulk behavior is independent of y and the 
system is critical for all values of y (the relaxation time goes to ~ for 
N---} oo ), the system showed interesting finite-size effects which depend on 
y. They obtained the relaxation time numerically and showed that it goes. 
as [ N / ( 1 -  y)]0.5 for y # 1 and as N for y =  1, thus exhibiting a phase 
transffion at y = 1. 

It can be proved that in the case of a system given by Eq. (1) when 
a l = 0 ,  a2>0 ,  and l > 2 ,  [1 goes as N l o g N / a 2  and if al ,  a 2 ..... ai=O , 
ai+ 1 > 0, and l >  i + 1, t-i goes as N i. However, for want of space we do not 
give the proof. 

2. F O R M U L A T I O N  

Let Q(n, t )dt  represent the probability density function of the F P T  
z(n) defined in Eq. (2). Then Q(n, t) satisfies the equation 

dQ(n, t) /dt= A n Q ( n -  l, t) + BnQ(n + l, t ) -  (An + Bn) Q(n, t ) (7) 

Note that the equation for Q(n, t) is adjoint to the master equation for 
P(n, t), the probability that X(t) = n. Here A(n, N) and B(n, N) have been 
written as An and Bn for brevity. The moments (tin(n)) of Q(n, t) are 
defined as 

;? (tin(n)) = dt tmQ(n, t) 

and are obtained from Eq. (7) as 

(An+ Bn)(tm(n))  = A n ( t m ( n -  1))  + Bn(tm(n+ 1))  + m ( t m _ l ( n ) )  

For the MFPT,  which is nOthing but S~ tQ(n, t) dt, the equation is simply 

(An + Bn) t l(n) -- A n tl(n - -  1) -- B n tl(n + 1) = 1 

Defining differences Atl(n ) = tl(n ) - tl(n + 1), we get 

A n A t l ( n -  1 ) -  anAtx(n ) = - 1  (8) 

822/71/5-6-23 
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The values of A,  and B n at n = 0  and N (i.e., A o = Bo =0,  B N =  O) 
impose the following boundary conditions: 

t,(O) = 0 and Atl(N) = 0 

The set of equations (8) may be solved recursively from N downward to 
yield 

N - - 1  

Aq(n)= - ~ (1/Ai+l)fln+l,i 
i = n  

where 
i2 

 il,i2 = lq (B/Aj)  
J =  i 1 

n - - 1  

Since tl(0 ) = 0, tl(n ) = -- ~. Atl(i); therefore 
i = 0  

n - - 1  N - - 1  

q ( n ) =  ~ ~ (1/Ad+l)fli+l,j (9) 
i = 0  J = i  

This equation has also been derived using a different method by Murthy 
and Kehr (5) and Le Doussal. (6) The quantity of interest is the average 
MFPT {1 given that the system was initially in any of the states 1 to N with 
equal probability: 

N N i - - I  N- - I  

t-x=(1/N) ~ t l ( i ) = - ( 1 / N )  ~ ~ At l (n )=- (1 /N)  ~ ( N - n ) A t , ( n )  
i = 1  i = 1  n = 0  n = 0  

Therefore 

N--I N--I 

[1=(1/N) ~ ( N - n )  ~, (1/A~+~)fl.+l,g (lO) 
n = 0  i = n  

Similarly the higher moments of the FPT may be obtained stepwise, using 
the known values of the lower ones. In general t-,, is given by 

N - - 1  N 1 

{m=(l/N) ~ (N--n) ~ (mtm_l(i+l)/Ai+l)fln+l,i (11) 
n = 0  i = n  

The basis of the proof of Eq. (4) is the fact that the bias toward the 
stable state keeps on increasing as n increases. This leads to the contribu- 
tion to {, from values of i >> N Ct- 1)it being negligible. It can be shown that 
i,(n) goes as n for n <t no and as no for n >> no, where no = N (l- ,)/t. Using 
these observations, we find that t-t ~ no. 
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However, for a more exact proof of the theorem we make use of the 
relations ( 12a)-(12d) given below. 

and 

if N1 = N(t- 1)/l(log N)~t+ ~)/~t- 1~ 

N N 

and f l = ( 1 / U )  ~ (N-n)  ~ (1/Ai+l)fl.+~,i (lZa) 
1 N2 

then f l /N ~l 1)/l= O(1/log N), where N2 = max(N1, n) 

NI N 1 

f2 = ( l / N ) ~  (N--n)~ (1/A,+l)fl.+l,~ 
1 n 

N1 NI  

=~ ~ (1/ali)exp[-C(it-n')/a~lN'-l][1 + O(NI/N)] (tZb) 
1 n 

N I  N I  

x Z  Z (1/ali)exp[-C(i'-n~)/a~ u'  1] 
1 n 

--?.f? (dx/aa x) e x p [ -  C(x l -  yl)/(a I lN (t- 1))] + O(log Na) 

(lZe) 

fU' dy fUl dx(1/al x) exp[--C(xZ- yZ)/aa lNt-1] 

= {~o dY f ;  dx(1/alx)exp[-C(x'- yZ)/allN'-~] t 

• [ t  + O(1/log N)]  (12d) 

Now we give the proof of the above relations. To prove (12a), we first note 
t 

that for k<~N/logN, Ak>~Bk>>.alk(1-S/logN), where S =  ~. fatal, 
r n = 2  

and tbr k > N/log N, Ak = CU/N t- 1 >1 CN/(log N)( Therefore, 

1/A k <~ 1/alk(l - S/a 1 log N) + (log N)t/CN 

Also 

for 1 <~k<~N 

i 1 
fl.+ l,~= ljlr-~ 1 + CU/(BkN t-l) 

i 1 

<~ l-[ 1 + (C/S)(k/N)'-' 
n + l  
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1/[1 + (C/S)(k/N) l- 1"] monotonically decreases with k. Therefore for both 
n~<N1 a n d n > N 1  

So 

f l < ~  ~ a l n ( 1 - S / l o g N i  + CN Jl_I+(C/S)(NdN) '-1 
i ~ l  N 2 

1 (log N)t][1 + (C/S)(N,/N)'-1] 
~< ~ aln(1 -- S/log N) + CN JL ( - ~  J i=1 

S l-log N (log_ N)t.](__N_N ) ' -  1 [ 1 + O ( ~ ) ]  
<~-'~[ al -t C ]\N1,} 

Substituting the value of N/N1, we get the relation (12a). 
To prove (12b), we use the relations 

and 

and 

( N -  n)/N= 1 + O(NI/N) for n ~< N 1 

/( I ' l} 1/Ai=l  ali 1+ ~ (aJal)(i/N) j-~ 
j = 2  

= (1/ali)[1 + O(N1/N)] 

i 1 
t~~ H 1 + Ckt/(Bk Nl-1) 

k = n + l  

along with the inequalities 

exp( - x  + x 2) ~> 1/(1 + x) ~> exp( -x)  for x~>O 

(13) 

(14) 

(15) 

This leads to 

[ i ( Bk exp k=~-+l - 

Now for i ~< N1 
i CU 

BkN t- 1 
k = n + l  

C2~2'/N 2'- ~1 
+ ~ }J~>~"+"; 

C i U-  l/Nt- ' 
E 

al  k = n + l  l 
1 -k ~', (aj/al)(k/N) j-1 

j = 2  

-ci'n' E a~ IN l-1 1 + 0 (16) 
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Similarly, 
i 

~. C2k2Z/B~N 2'-2= O(1/N,) (17) 
k = n + l  

Combining Eqs. (15)-(17) and making use of the fact that i~< N1, we have 

fln+l,i=exp ~ /~-2-TjL 1 q- O (18) 

Combining Eqs. (13), (14), and (18), we have 

NI ~n--Nll [(--~l)il--nZ][ ( ~ ) ]  
f =  ~ al iexp ~ 1 + 0  

n = l  i =  

For relation (12c) we first prove that for a positive, monotonically 
decreasing function f(x) in the range a ~< x ~< b 

b b 

f(a) >1 ~ f(i) - ;a f(x) dx >~f(b) (19) 
i=a 

b b--1 i + 1  

;a z i i=a 
Therefore 

b--1 b b 

Y~ f(i)>.fo f(x)dx>~ 2 f(i) (21) 
a a + l  

Using Eqs. (20) and (21) and Eq. (19) twice, we get that 
N1 N1 

2 2 (1/ali) exp[-C(i'-nZ)/allN z 1] 
1 n 

-- f ; ldy  f ;  1 (dx/a,x)exp[-  C ( x ' -  yZ)/allN"-l)] 

= O ( l o g  N1) 

,Coming to the proof of (12d), we note that 

f ;  dyf~dxF(x,Y)-fS'dYf;~dxF(x,Y) 

= fo dyfy dxF(x,y)+fl dy 2 dxF(x,y)+ dy dxF(x,y) 

where F(x, y) stands for (1/alx) e x p [ - C ( x / -  Y)/allN 1 1]. 
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We now 
terms on the right-hand side can be neglected when N ~ oo. 

First, 

f~ dy f y  dX(1/alx)exp[-C(x'-y')/allN '-1] 

<~ f/ dy fN(dx/alx)+ f/ dY f: (dx/a,N) 
x exp ( - Cx/a 1 l ) ] exp (C/a 1 INt- 1 ) 

= O(log N) 

Second, 

N oo 

fl dY fN2 dx(1/alx)exp[-C(xt- y)/allNt-1] 

<~ fN dy f :  dx'(1/aly)exp[-CN~-lx'/(a~-lx'/(a~Nl-l)] 

= (IN l -  I / C N J -  1) log N 

= N(I- ~)/l/C(log N) t 

Lastly, 

Bhatia e t  al.  

show that the contribution due to each of the individual 

f :  dy fy  dx(1/alx) e x p [ - C ( x  t -  yZ)/allN t- 1] 

f) fo <~ dy (dx'/aly) e x p ( - C S  lx'/alNl-1) 

= o ( 1 )  

Further, it is easy to see that 

f :  dy f )  dx(1/a,x)exp[_C(x, y,)/allN I i ]  

= (N/al)(t- 1)/t(1/c)l/t qkl 

Using this (22) along with (12b)-(12d), we have 

N1 NI 

(l/N) ~ ( N -  n) ~ (1/Ai) ft. + 1,i 

(N/al)(Z - 1)/t(1/C)1/i - ~ 1 + 0 

(22) 

(23) 
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where ~bl is the improper integral given by Eq. (5). Using Eqs. (23) and 
(12a) in Eq. (10), we have 

{1 lim 
N---~" oo (N/a , )  ('-1)/' ( l /C )  1/' (Jr 

thus proving the theorem. 

3. R E S U L T S  A N D  D I S C U S S I O N  

If we substitute the values / = 2 ,  al = l - y ,  a2= - ( l - y ) ,  and C =  1 
in Eq. (1), our system reduces to the one considered by Privman etaL (4) 
The asymptotic average M F P T  in this case goes as [N/(1 - y)]O.S for y # 1, 
in agreement with the result~ obtained by Privman et al. using numerical 
methods. They obtain a phase transition for y = 1 with the average M F P T  
going as N. Our model also shows a phase transition for al = 0. However, 
there is a slight difference between the cases y = 1 in Eq. (6) and al = 0 
in Eq. (1). In the former case t-1 goes as N, whereas in the latter it goes as 
Nlog  N/a 2. This difference arises out of the fact that in the case considered 
by Privman et al. B(n, N ) =  0 for all n, whereas it is greater than zero in 
our case. 

Some numerical computations were done to verify Eq. (4). The 
average M F P T  and the higher moments of the F P T  distribution were com- 
puted using Eq. (11) in the range N- -  400 40000 and for l - -2 ,  3, 4,..., 8. 
For  a 1 # 0 the exponents of N for l =  2, 3, and 4 come out to be 0.51, 0.68, 
and 0.77, respectively, which are close to the values of 0.5, 0.67, and 0.75 
predicted by Eq. (4). For  higher l's the agreement was slightly poorer. For  
l =  8, for example, the numerical value was 0.91, as against 0.875 from 
Eq. (4). This discrepancy was most likely because the asymptotic region 
had not yet been reached. In fact, the exponent shows a gradually decreasing 
trend with increasing range of N values. Similarly, for al = 0 and a 2 # 0 and 
for l = 3, 4 the N log N behavior was verified. 
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